
WHITE PAPER

TEL USA:	 253-872-7788
TOLL FREE:	 +1 800-915-7700
TEL UK:	 +44 (0)870 120 3148

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

Copyright 2013. PowerTech is a registered trademark of The PowerTech Group, Inc.
AS/400 and System i are registered trademarks of IBM. All other product and company
names are trademarks of their respective holders.

Managing Privileged Users
on IBM i

By Robin Tatam

B	ring up the topic of IBM Power Systems™ and 	
		 IBM i and the subject of server viability and
platform longevity invariably comes up. For years,
analysts have predicted the demise of the platform
whose heart beats in the chest of many of the world’s
largest organizations. Frustrated industry experts reject
the notion that the server is outdated, citing highly
scalable 64-bit Power-PC technology, class-leading
reliability, and integrated security.

Much of the Power Systems controversy involves its
“green screen” user interface. For years, IBM and a
veritable army of third-party solution providers have
sought to provide the ultimate answer to what many
regard as the server’s Achilles heel. A steady stream of
products provide users with a modern, graphical user
interface (GUI) to their IBM i applications.

Despite our love/hate relationship with the green
screen and strides to enable a GUI, IBM i remains
primarily a command-based operating system. As a
result, the operating system is uniquely vulnerable
when access to server commands is lax. For this reason,
best practices and modern regulatory compliance
standards mandate that IBM i server commands must
be restricted to users on an as-needed basis to ensure
server and application integrity.

This paper exposes some little-known risks associated
with commands and provides recommendations on
ways command access should be managed. It also
highlights the need for commercial-grade security
solutions designed specifically to assist administrators,
auditors, and managers with this often-difficult task.

Defining “Command”

Simply stated, a command is an interface to a server
or application function. IBM i commands simplify
the invocation of a program much like a Microsoft
Windows shortcut icon. A command is a made up of a
command definition object (*CMD), which defines any
parameters and command rules, and an associated
command processing program (CPP), which performs
the command’s function.

IBM supplies more than 1,700 commands to control
the server’s operating system and licensed program
products. In addition, an easy-to-use programming
interface enables software developers to create their
own commands. In fact, PowerTech includes numerous
commands to provide a fast-path for power users to
directly access functions in our security solutions. In
a fifteen-year programming career, I personally wrote
hundreds of commands to simplify and streamline

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

the user experience with my applications. This paper
focuses primarily on IBM-supplied commands, but
most of the concepts are equally applicable to user-
written commands.

In comparison to the direct invocation of a program,
a command has three primary benefits:

	 •	 Easy to remember
	 •	 Simple to invoke
	 •	 Validation of user information (parameters)

Let’s look at a fictitious order report program,
myorders, which requires the user to supply qualifying
information—perhaps a customer number, a data
range, and whether out-of-state orders should be
included—before it can execute its programmed task.

Programmers typically design a screen interface to
facilitate this type of information entry; however, this
makes automation difficult as the user must be sitting
at a workstation and take a menu option to enter the
information.

Depending on how the application is programmed, the
user may be able to supply the required information
directly to the program by including parameters. The
call to our orders report program may resemble the
following:

	 CALL PGM(myorders) PARM(‘000010’ 			
	 ‘09012011’ ‘093114’ ‘*NO’)

This approach eliminates the automation restriction by
enabling users and batch programs to bypass the entry
screen. However, it’s not something that we would
want end users typing on a command line; it’s far too
complex and the formatting is prone to human error.
This is a perfect scenario where a command provides
ease of use and flexibility.

Unlike the simple myorders program, IBM’s operating
system programs often have dozens of parameters.
Parameters may also have co-dependencies; for
example, the RSTOBJ (restore object) command allows
the user to designate that a save file (*SAVF) is to be
used as the source of the restored objects. If the user
designates *SAVF then they also must provide the
name and library location of the save file.

Allowing a user to call an IBM i command-processing
program directly could make the server vulnerable to
abuse (not to mention how complex and cumbersome
the CALL command would be). Instead, IBM prohibits
users from invoking operating system programs
directly and provides commands and application
programming interfaces (APIs).

Which users can run commands?

Misconceptions are common regarding how a user is
granted command privileges. The operating system
does not allow control over whether users can access
a command line, but only whether they can run
commands on it. Contrary to popular belief, control is
not a system- or profile-wide setting, but is determined
by each command individually.

Every user’s profile contains an attribute that designates
if the user has limited capabilities. This attribute has
three possible values: *YES, *NO, and *PARTIAL. The
*NO and *PARTIAL values grant a user command
privileges. A value of *YES works in conjunction with a
corresponding attribute on each command definition
object which indicates if the command is available to
the user with limited capabilities.

The vast majority of IBM i commands are shipped with an
Allow Limited User attribute value of *NO which prevents
execution by a user with limited capabilities. This command
attribute can be altered and should be audited occasionally
to ensure that it has not been modified without permission,
especially for powerful or sensitive commands. Auditing
*CMD objects will generate a “ZC” (object change access)
event if this command attribute is modified, although the
log will not indicate which command parameter was altered.
All audit entries should be monitored and reported on
with dedicated auditing solutions.

The limit capability setting is only applicable to
commands that are invoked from a system command
line. Commands still can be run within a program and
initiated from a menu. This provides the flexibility to
permit users indirect access to system functions, such
as Work With Spooled Files (WRKSPLF), without giving
them command execution permission. Unfortunately, as
discussed below, client-server interfaces do not always
enforce the limit capability restriction.

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

Running a Command

The system command line represents the most com-
mon way to execute commands; however, IBM i contains
numerous interfaces that allow commands to be issued:

	 •	 5250 (green screen) command line on 			
		 operating system screens
	 •	 Within a command language (CL) program
	 •	 Programming APIs (e.g. QCMDEXEC)
	 •	 Submitted to batch
	 •	 Non-traditional green screen interfaces
		 (e.g. QSHELL)
	 •	 Client-server interfaces (e.g. FTP, REXEC)

Understanding each methodology is critical for any
chance of exercising control over commands. For
example, a little-known vulnerability exists with several
client-server interfaces, including FTP, which allow host
commands to be invoked by any user. While object
authority and special authority requirements must
always be satisfied, not every interface validates the
user’s limit capability attribute. This means that users
could be obtaining command privileges without the
consent of the security administrator, regardless of the
‘allow limited user’ settings.

IBM i Command Restrictions

Once a user has been granted (or has illicitly obtained)
the ability to invoke commands, several criteria remain
that must also be satisfied before a command runs:

Object Authority

IBM i evaluates a user’s authority to all objects in the
same way regardless of the object type. A user must
have sufficient authority to the command definition
object to run the command.

Many operating system commands are shipped with
a public authority of *EXCLUDE. This limits access to
profiles with *ALLOBJ special authority and profiles
that have been granted private authority to the
command object. Other commands are supplied with
a public authority of *USE allowing virtually any user
to easily satisfy the requirement. The Print Public
Authority (PRTPUBAUT) command should be used

to determine which commands do not have public
authority of *EXCLUDE. Of course, a security
administrator can change public authority to tighten
or relax the object authority on any command.

If executing a command will impact another object,
the user must have the necessary authority to the
impacted object in addition to authority to the
command itself. For example, the Delete Program
(DLTPGM) command is designed to delete program
objects. In addition to having authority to the
command, a user must have Object Existence
(*OBJEXIST) authority (or *ALLOBJ special authority)
to the program object being deleted.

If best practices are followed, IBM i event auditing
should be active and configured to detect authority
failure events (*AUTFAIL). Unauthorized access attempts
will log an “AF” (authority failure) event into the security
audit journal, QAUDJRN. To ensure timely notification
of these security events, QAUDJRN should be monitored
proactively with an audit solution.

For more information on object authority, refer to the
IBM i Security Reference Manual available online at
www.ibm.com (keyword “IBM i Security Reference Manual”).

Special Authority

After obtaining the necessary object authority to the
command and any impacted objects, the operating
system determines if the user must also possess a
particular special authority. There are eight admin-
istrative privileges—known as special authorities—
that can be assigned to a user or inherited from any
of the user’s group profiles. Many commands mandate
that the user must possess one or more of these
special authorities.

IBM does not publish a list of commands requiring a
particular special authority; however, each operating
system command has detailed help text that outlines
if there are additional requirements, including special
authorities. An example of this documentation is shown
in Figure 1.

Alternatively, the Generate Command Documentation
(GENCMDDOC) command can generate HTML files in
the Integrated File System (IFS) containing the help text.

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

Command Definition Restrictions

A command’s definition object defines whether it can
be executed interactively, in batch, or both. It also
designates if the command only can be invoked from
a program. These settings can be altered but there is
usually a programmatic reason for them to remain set
as supplied. The Retrieve Job Attribute (RTVJOBA)
command, for example, only can be invoked within
a CL program as it retrieves job information into
variables for interrogation. This command would serve
no purpose if invoked directly from a command line.

IMPLEMENTING A SOLUTION

Start with Perimeter Protection

Despite IBM’s addition of exit point “hooks” in the
operating system in the mid-1990s, PowerTech’s State
of IBM i Security study reports that the vast majority
of organizations are still not using exit programs
to monitor access through client-server interfaces.
While not every interface provides data access or the
ability to execute host commands, several do. In my
professional opinion, this often represents the most
significant configuration vulnerability.

Fortunately, this risk can be mitigated surprisingly
easily by implementing a commercial exit program
solution. An exit program should be assigned to each
exit point so that it is invoked any time a transaction
comes through the interface. A well-designed exit
program fulfills the requirement of a software firewall
to control and audit user transactions.

Security administrators
should closely monitor
traffic coming through these
client-server interfaces and
strongly consider restricting
the ability to execute host
commands. The ideal exit
program solution can do this
selectively, still permitting
legitimate commands to
be executed and audited.
Legacy command execution

restrictions are easily enforced once a user is not able
to circumvent the limited capability restriction.

For more information on exit points and exit programs,
refer to The Truth Abut Exit Points, an exclusive white
paper available at www.powertech.com.

Reduce the Number of Privileged Users

Security best practices—as well as many modern
regulatory standards—call for a restriction on the
number of privileged user accounts. This mandate
encompasses users that can access critical server
functions as well as those that can access application
data outside of an approved application. The goal of
restriction is to prevent a user from having the ability
to perform tasks that are outside of the responsibilities
of that job role.

My definition of a privileged user is one that carries
command privileges in conjunction with one or more
of the following:

	 •	 Any of the eight Special Authorities
	 •	 Private authority to critical objects
	 •	 A server with permissive public authority

As a reminder, commands may be executed through
client-server interfaces even when the user has limited
capabilities. In addition, data access through these
interfaces does not require command privileges.

One of the most frequently cited audit issues on
servers running IBM i is that there are often far too
many user accounts with unjustified privileges. Each
year, the PowerTech security study corroborates this

FIGURE 1: ENDSBS IS AN EXAMPLE OF A
COMMAND REQUIRING *JOBCTL SPECIAL AUTHORITY

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

with a review of special authority assignments and
public authority settings. Fortunately, role-based
access control (RBAC) initiatives are becoming
commonplace and this helps identify profiles with
excess privileges so that they can be permanently
altered to a more appropriate configuration.

Of course, there are times when programmers,
administrators, and even end users have a legitimate
requirement to access restricted areas of the server
and perform tasks that might require higher privileges
than the corporate security policy allows. This can be
accomplished while still retaining control and visibility
to the user’s actions.

Adopted Authority

Restricted tasks can be performed using adopted
authority. Adoption is a programming-based technique
that enables a program to run with more authority than
the user who is running it. This temporary elevation
of authority is best suited to performing very specific
tasks, such as a enabling a disabled account. It
solves the dilemma of granting a help desk employee
*SECADM and *ALLOBJ special authorities in order to
use the Change User Profile (CHGUSRPRF) command.

Care must be taken to ensure that the adopting
program does not provide an interface to allow tasks
beyond the program’s intended function. For example,
the adopting program should not present the user with
a command line that honors the adopted authority,
otherwise the user may use the increased authority to
run unauthorized functions.

Auditors may require an audit trail of programs that
elevate a user’s authority via adoption. This can be
accomplished by designating *PGMADP in the IBM i
event audit configuration. Before you take this
approach, check whether an application utilizes
adoption as a primary authorization technique, as
the setting will generate an audit entry every time
an adopting program is invoked.

Profile Switching

Profile switching is the modern solution for the
temporary assignment of privileged access. Also an

operating system capability, switching carries several
advantages over legacy authority adoption:

	 •	 User authority also can be reduced
	 •	 Effective for IFS access
	 •	 Can be utilized outside of an application 		
		 program

Switching enables a user to inherit all of the capabilities
of the target profile, including command line privileges.
Unlike adoption, which can only maintain or increase a
user’s authority, switching can also reduce authority—
useful when starting an interactive SQL or Query
session. Powerful users such as programmers and oper-
ators can now be configured without privileges and
then invoke a profile switch when a restricted task needs
to be performed. IBM i APIs facilitate the seamless
switching process—in fact, the operating system uses
this technique for many of its own TCP/IP services.

Profile management software is ideal for controlling
powerful users while still supporting the IT requirement
for privileged account access. Using modern profile-
switching APIs, the ideal solution facilitates a user’s
acquisition of additional privileges as-needed while
satisfying the monitoring provisions of modern
regulatory standards.

Restrict and Monitor Command Usage

IBM i is the primary enforcer of control over command
execution. Unfortunately, there is no way to designate
conditional criteria. Once a user has met the necessary
criteria for a particular command, the operating
system does nothing else to ensure an activity is
reasonable. For example, an operator who has been
granted *JOBCTL special authority to end the server’s
subsystem during a weekend maintenance window can
also accidentally perform that same task in the middle
of the production day.

For many organizations, using software to manage
command line access has quickly become an integral
part of their command controls. A powerful solution
supplements traditional authority with conditional
criteria and action-based responses. The ideal solution
enables authorized users to designate complex conditions
that are evaluated prior to IBM i processing the command.

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

A partial list of available conditions may include:

	 •	 Command parameter evaluation
	 •	 User is on a named authorization list
	 •	 Day of week
	 •	 System date and time
	 •	 User name
	 •	 If a named program exists in the
		 invocation stack

If a designated condition is evaluated to be true, then
an action can be performed. A partial list of actions
may include:

	 •	 Prevent the command
	 •	 Continue with the command as-is
	 •	 Run an alternate command (in addition to or
		 in replacement of the requested command)
	 •	 Add/remove/override a command parameter 		
		 value
	 •	 Send a notification

For the first time in the history of the IBM i (OS400,
i5/OS) operating system, administrators can now
designate when and how a command can be used.
It is easy to prevent the system operator from
accidentally powering the server down during the
day while permitting the same user to run it during
a scheduled maintenance window—perhaps with an
authorization list to designate “super” administrators
who retain full control. You can also force programmers
to use a switch profile in order to track and control
development activities, despite the fact that the
operating system may grant these users unrestricted
use of the compilers.

A command monitoring program must evaluate
conditions and perform actions before the command
is executed. This way control can be imposed on
users who carry the (normally) unrestricted power
of *ALLOBJ special authority! Imagine preventing
a security officer from turning off the system audit
functions, or sending an alert notification the instant
that a user profile is created outside of the PowerTech
PowerAdmin user propagation facility.

Auditing User Actions

Talk to an auditor or dig into any regulatory standard
and you most likely will discover that auditing the
activities of powerful users is a primary initiative. In
fact, audit standards pertaining to privileged access are
often as concerned with the visibility of actions as they
are with preventing unauthorized activities.

IBM i contains powerful functionality to track system
and user events. To learn more, visit Security Auditing in
the Real World, a free download at www.powertech.com.
This exclusive paper outlines how to set up auditing
at the system, user, and object level. It also contains
valuable information regarding methods to interrogate
the resulting audit data.

In the context of this document, we are primarily
interested in tracking the command activities of
particular individuals. In order to support the separation
of duties between the role of security administrator
and auditor, the Change User Audit (CHGUSRAUD)
command is used instead of the normal profile
configuration commands. Assigning the value of *CMD
instructs IBM i to record commands issued by the user
or through a program that they are running. The *CMD
value is available only with specific users due to its
potential to generate an excessive volume
of audit entries.

When a command is executed by an audited user,
a “CD” entry is written to the event repository
(QAUDJRN). This provides irrefutable proof that the
command was run and by whom.

The challenge with auditing—regardless of the types
of events—is that IBM provides only rudimentary
commands to extract and analyze the audit data.
Responsibility remains with the organization to
locate and process the entries, in addition to
reacting to the use of an unauthorized command.
Some solutions can automatically configure all audit
settings and simplify reporting over command events.
Reporting functions should allow each individual’s
activities to easily be identified.

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

The Danger of Invisible Commands

There is nothing in IBM i that truly constitutes an
“invisible” command; however, there are numerous
commands that will transport the user into an
environment that cannot be audited using the
command audit facility discussed previously. Auditing
of these “invisible” commands must be addressed to
provide a comprehensive trail of a user’s command
activities.

Examples of potentially dangerous and hard-to-audit
commands include:

	 •	 Start Data File Utility (STRDFU / UPDDTA)
	 •	 Start Interactive SQL Session (STRSQL)
	 •	 Start QShell Session (STRQSH)
	 •	 Work Link (WRKLNK)
	 •	 Work With Query/400 (WRKQRY)
	 •	 Call Program (CALL)
	 •	 Start Program Development Manager (STRPDM)
	 •	 Start Source Entry Utility (STRSEU)
	 •	 Start System Service Tools (STRSST)

These commands are hard to audit because they
initiate an environment that allows a user to perform
system, programming, or database tasks without
generating a comprehensive audit trail. Database
changes can be audited by journaling the physical files,
although it’s often difficult to tie the change to the
action that caused it. For example, let’s consider the
following SQL statement:

	 Update CUSTOMER set ARBALNC = 0
	 where ARBALNC > 0

This simple instruction will instantly zeroize the
ARBALNC field on every record. If the CUSTOMER file
was being journaled, then the journal receiver would
contain an entry for each record that was updated—
potentially tens of thousands of entries—but it would
be virtually impossible to identify what process
instigated the change.

A common request from IT auditors is to know
exactly what tasks programmers are performing on
production systems. Programmers are usually the
most experienced and powerful users on the server

and represent a very real threat potential. Auditing
program objects will indicate that an object was
opened with the potential for change, but providing a
comprehensive log of program source code changes is
difficult and this is unacceptable in an audit.

Methodologies exist to trace SQL statements but do
nothing to audit any of the environments identified above.
To mitigate this risk, your solution must contain a screen
capture capability. With this facility, when the user initiates
a swap, a virtual “camera” can be activated to record
all interactive activity. Having an audit trail that includes
all 5250 screens, keyboard entries, and which key was
pressed to process the screen provides a comprehensive,
yet easy-to-read trace of a user’s activities.

Ideally, the screen capture function should enable an
administrator to view privileged users’ screens in near
real-time. It should also allow post-session playback to
view user activities after they have completed. This can
be especially useful for monitoring off-shift users or
non-employees such as consultants and vendors—an
area of grave concern for auditors. In addition, some
screen capture features on the market can bundle
the recorded screens into a searchable PDF and auto-
matically distribute them as an email attachment upon
conclusion of the swap activity.

Next Steps

Managing privileged users on the IBM i server requires
a coordinated approach to be effective. Legacy controls
can break down quickly in the modern world, where
access comes from PC-based interfaces as well as the
traditional command line. The biggest mistake an organ-
ization can make is to do nothing.

When embarking on a privileged account management
project, an organization should:

Review
Interrogate the currently assigned privileges to
determine existing capabilities.

Define roles based on server and applications.

Identify privileges to be associated with each 			
user role.

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

Cleanse
Remove unnecessary privileges from users.

Establish group profiles for roles.

Assign users to roles.

Enhance
Implement security applications to increase 			
control and visibility of user activities. Solutions 		
should:

	 •	 Control user on- and off-boarding to guarantee 		
		 consistency in the deployment of user roles.

	 •	 Secure and audit client-based command lines 		
		 and database access.

	 •	 Facilitate temporary assignment of privileges 		
		 via profile swaps, tracking of legacy command 		
		 line activities, and recording of user screens.

	 •	 Provide notification and conditional control 		
		 over commands.

To be truly effective, auditing should be continuous.
Checklists should include verification of appropriate
user privileges and a review of the audit log of profile
swaps. If swap activities are frequent, consider random
spot-checks in addition to reviewing activities with
partial or missing information (e.g. incorrect ticket
numbers or weak explanations).

In Summary

As long as IBM i remains a command-centric oper-
ating system, controlling and monitoring the use of
commands will be a critical security requirement
for all organizations. Utilizing object-level security
and command line restrictions establishes a solid
foundation upon which other controls can be built.
When best practices in IBM i security configuration,
monitoring, and reporting are not possible—or not flexible
enough—quality third-party solutions should be assessed
to enhance the features and simplify the effort.

PowerTech’s security solutions run in some of the
largest companies on the planet. Market-proven, they
enable these organizations to accomplish compliance

faster and more easily, thereby saving costs while
reducing risk. Organizations that (currently) have
no regulatory requirements can still benefit from
the enhanced security experienced through their
deployment.

When synergized by a well-configured IBM i security
infrastructure, PowerTech solutions elevate your Power
Systems server running IBM i to a world-class security
environment for managing access by privileged users.

About the Author
 	 Robin Tatam is the Director

	 of Security Technologies for
 PowerTech, a leading provider
 of security solutions for IBM i
 servers. A frequent speaker on
 security topics, Robin is a Security 		

	 	 subject matter expert for COMMON, 	
	 	 the world’s largest IBM i user group,
and is co-author of the IBM RedBook “System i® Security:
Protecting i5/OS Data with Encryption.” Robin can be
reached by email at robin.tatam@powertech.com.

Managing Privileged Users on IBM iThe PowerTech Group, Inc.
www.powertech.com • info@powertech.com

Add / Remove
Exit Program

Add Job
Schedule Entry

Change DDM
Attributes

Change Function
Usage

Change Network
Attributes

Change Serve
Authentication Entries

Change System Value

Change User Profile

Create Library

Create Programs

ADDEXITPGM

ADDJOBSCDE

CHGDDMTCPA

CHGFCNUSG

CHGNETA

CHGSVRAUTE

CHGSYSVAL

CHGUSRPRF

CRTLIB

CRTxxxPGM

No

No

No

No

No

No

No

No

No

No

No

Yes

No

No

No

Yes

No

Yes

No

Yes

*EXCLUDE

*USE

*USE

*USE

*EXCLUDE

*USE

*EXCLUDE

*USE

*USE

*USE

N/A

N/A

*IOSYSCFG

*SECADM

*IOSYSCFG
(+ *ALLOBJ for
some values)

*SECADM

Dependent
on values

*SECADM

N/A

N/A

APPENDIX A

Powerful commands

A selection of powerful commands and their associated attributes are outlined in Table 1. This is not an exhaustive
list due to variations in licensed program products as well as the sheer number of IBM i commands. It is designed to
identify commonly used commands that could be considered invasive. More information about the function of each
command can be found in the IBM Information Center.

TABLE 1: POWERFUL COMMANDS

 Requirements might include object-level authority to an object impacted by the command.
Information on command requirements can be found in the help text for the command.

Allow Limited
Capability UsersCommand Description Public

Authority
Special Authority

Requirement
Other
Reqs

Managing Privileged Users on IBM i
C021PM3

The PowerTech Group, Inc.
www.powertech.com • info@powertech.com

Delete Library

Delete Object

End Subsystem

End TCP Server

Power Down System

Add / Remove Exit
Program

Restore Library

Restore Object

Save Library

Save Object

Start System
Service Tools

Work Link

Work with
Spooled Files

Work With Job
Schedule Entries

DLTLIB

DLTxxx

ENDSBS

ENDTCPSVR

PWRDWNSYS

RMVEXITPGM

RSTLIB

RSTOBJ

SAVLIB

SAVOBJ

STRSST

WRKLNK

WRKSPLF

WRKJOSBSCDE

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

No

Yes

No

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

*USE

*USE

*USE

*EXCLUDE

*EXCLUDE

*EXCLUDE

*EXCLUDE

*EXCLUDE

*USE

*USE

*EXCLUDE

*USE

*USE

*USE

N/A

N/A

*JOBCTL

N/A

*JOBCTL

N/A

*SAVSYS or
private authority

*SAVSYS or
private authority

*SAVSYS or
private authority

*SAVSYS or
private authority

*SERVICE

N/A

N/A

N/A

TABLE 1: POWERFUL COMMANDS (CONTINUED)

Allow Limited
Capability UsersCommand Description Public

Authority
Special Authority

Requirement
Other
Reqs

